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The analysis of data from studies of weak molecular 
complexes between donors and acceptors has been consid­
ered extensively by several authors,2 most notably by Per­
son.3 A few years ago the present author attempted to give 
a theoretical explanation of Person's limit criteria for com­
plexes in which complete saturation could not be reached 
and, following an earlier treatment by Weber,4 extended 
the limit criteria on the basis of the amount of information 
obtained in a binding experiment.5 In addition, the effects 
of second-order interactions on the calculated values of the 
extinction coefficients and association constants of charge-
transfer complexes were examined.6 More recently, we have 
been studying protein surface topography by probing for ex­
posed aromatic amino acid donor residues with a suitable 
charge-transfer acceptor (l-methyI-3-carbamidopyridinium 
chloride).7 9 The simple one- and two-she binding models 
previously considered do not provide an adequate descrip­
tion of these systems; each protein examined so far appears 
to have more than a single binding site for the probe, and, 
furthermore, some proteins have more than one type of site 
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sine side chains). In such cases the observed charge-transfer 
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ing the complex and on the degree of saturation of the indi­
vidual donor residues. The overlapping spectral distribu­
tions can be used to advantage in identifying the specific 
types of donors involved in the complex, but because of the 
very weak binding of the probe, it is not possible to obtain 
saturation of any of the donor sites. The inability to attain 
saturation requires the use of extrapolation techniques and 
other approximations to arrive at quantitative estimates of 
the extent of interaction and the number of residues partici­
pating in the binding. 

Since the two-site model previously considered for 
charge-transfer complexes is inadequate for the description 
of multiple charge-transfer complexes on proteins, it was 
necessary to consider generalized equations for multiple 
equilibria. Such generalized equations are well known for 
methods in which the number of free and/or bound adsor-
bate molecules can be counted directly (e.g., equilibrium di­
alysis), but general equations have apparently not been con­
sidered where an indirect method such as light absorption is 
used to estimate the extent of interaction. The key to a gen­
eral analysis for any given experimental technique lies in 
the formulation of the relevant observation equation—the 
equation relating the desired molecular parameters to the 
experimental variable used to study the interaction. 

Theory of Weak Molecular Complexes. III. Observation 
Equations for Multiple Equilibria and an Application to 
Protein Charge-Transfer Titrations1 

David A. Deranleau 

Contribution from the Department of Biochemistry, University of Washington, Seattle, 
Washington 98195. Received August 8, 1974 

Abstract: The classical treatment of multi-site titration analysis is extended to include the specific experimental method used 
in the investigation of a binding system by means of a set of general observation equations. The observation equations are 
formulated for both statistical and intrinsic binding parameters and reduce to the classical equations in the special case of di­
rect experimental methods, where the number of free and/or bound adsorbate molecules can be uniquely counted. For indi­
rect experimental methods such as light absorption, an intensive parameter (e.g., extinction coefficient) appears in the equa­
tions and cannot be factored from the sums unless independent information concerning the relationship of this parameter to 
the number of bound adsorbate molecules is available. Thus, in the general case of an indirect method, it is not possible to de­
duce the order of the reaction from titration experiments utilizing the intensive parameter alone. Multiple-site protein 
charge-transfer complexes are used as examples of an indirect titration method, and approximate treatments of the binding 
data are considered for these systems. Association constants and extinction coefficients obtained from 1:1 homomorphic 
model complexes of the protein donor amino acids with a suitable acceptor can be used to interpret the protein data and to 
extract information concerning both the number and kind of sites available provided that the protein data are analyzed in 
terms of intrinsic association constants and extinction coefficients. The present communication gives the mathematical basis 
for such an interpretation, as well as for less specific interpretations based on the classical straight-line technique for charge-
transfer systems. 
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This communication presents a simple derivation of a 
general observation equation for multi-site titration analysis 
and considers in some detail various forms of the equation, 
the slopes and intercepts of relevant graphs, and approxi­
mate methods of solution for weak complexes. Where ap­
propriate, protein charge-transfer complexes are used as 
specific examples to clarify the discussion. The general 
equations reduce to classical equations involving only the 
number of sites and their respective association constants 
when certain assumptions concerning the relationship be­
tween the number of sites and the experimental variable are 
satisfied. In many instances these assumptions may change 
the character of the analysis and give rise to misleading or 
false interpretations of the data, as well as to erroneous 
values of the various molecular parameters deduced from 
otherwise appropriate graphs. In addition to the specific in­
clusion of the experimental variable used to study the inter­
action, the general equations quantitatively account for the 
nature of the assumptions involved in applying the classical 
equations for multiple equilibria. 

Observation Equation for Multi-Site Titration Analysis. 
In each case of an equilibrium reaction, say P + nX ^ PXn, 
we can define an intensive quantity $ which is the statisti­
cal average of the individual quantities $/ associated with 
the molecular species PXy as follows 

* ' Z * W P X , ] / £ WJ[PXJ] (1) 
j = o j = o 

Here the brackets indicate molar concentration, and the wj 
are weight factors (e.g., activity coefficients or intensity 
factors or both) appropriate to the particular experimental 
method being used. Examples of <£>, include the number of 
binding sites, the molar extinction coefficient, the nmr 
chemical shift, molar ellipticity in circular dichroism, the 
rate constant for a chemical reaction, or any other intensive 
property of the complex. Introducing the macroscopic (sta­
tistical) association constants Kj defined by 

[PX,] ^ Kj[VXj.JX] = K,[P][X]' (2) 

where the K/ = KQKXKJ . . . KJ are the so-called titration 
constants and Ko = ATo = 1, eq 1 becomes, with [P] not de­
pendent on j 

* - £ * ^ K , [ X ] ' / : ? > , K , [ X ] ' = 
j = 0 j = 0 

J0W0 + J)1W1ZI[X] + $,w,KiK?[XY + ... , , 
W0 + W1Ki[Xl + W1KiK2[X]2 + ... v ' 

Equation 3 is the general observation equation connecting 
the statistical average value of the intensive parameter <f> 
with its macroscopic values for the individual chemical 
species and the statistical equilibrium constants of the sys­
tem. When $ = v, the average number of X molecules 
bound per molecule of P, $,• = vj = j and with unit weight 
factors eq 3 becomes identical with the classical equation 
first proposed by Adair in 1925 to explain the binding of 
oxygen to hemoglobin10 

v = i>,[x]y£X[x]' (4) 

j = 0 J=O 

In contrast to Adair's eq 4, the general observation equation 
specifically includes the intensive parameter used to study 
the properties of an equilibrium distribution, and we turn 
next to an examination of the possible correspondence be­
tween eq 3 and 4. 

Assignment of the ij. In a direct method of binding anal­
ysis, where the number of bound (or unbound) adsorbate 
molecules can be counted independently, it is always possi­

ble to make the assignment $ = v (and thus $y = j). Exam­
ples of such direct methods include equilibrium dialysis or 
the use of specific ion electrodes, in which the equilibrium 
distribution between two or more compartments separated 
by a membrane freely permeable to one of the components 
can be measured separately and unequivocally. In the ma­
jority of binding studies—largely spectroscopic in nature— 
it is not possible to count the number of free or bound mole­
cules independently unless the $ ; are all known to be 
uniquely related to one another.1' In these cases recourse is 
had to some measurable quantity other than v which is pre­
sumed to be proportional to the amount of complex formed 
(absorbance, chemical shift, quenching of fluorescence, 
etc.). Furthermore, it is very often assumed that "propor­
tional to" is to be interpreted as meaning the <f>y- are given 
by the simple arithmetic progression <£, = y'$. This assump­
tion is certainly not justified in many instances; yet, the de­
sire to express the binding equations in terms of the number 
of sites occupied is compelling. Without loss of generality, 
we can introduce the definition $y = j$ — Sj in eq 3, ob­
taining 

ZjWjK1[XV ZSJWJKJ[XV 
_ J=O j = 0 

* = * — s (5) 
t WJKJ[XV t^HXV 
j = 0 J=O 

The Sj are the differences between the actual value of $/ 
and the value expected on the basis of additivity, and when 
the differences are all zero, setting all Wj = 1 and dividing 
(5) through by $ gives Adair's equation in terms of the ex­
perimentally measured ratio 

* / * = Z T K J X ] V I K J X ] ' S U (e) 
J=O J=O 

Here 0 < ($/$) < n, and it is this equation which has most 
often been used in the literature to evaluate allosteric and 
other types of multiple equilibria.12 

Clearly this procedure is of limited applicability, requir­
ing prior knowledge of the additivity relationships and the 
value of $. For protein charge-transfer systems, where the 
$,- are the extinction coefficients of the complexes PX;, such 
an assignment 6; = jt would be wholly inappropriate be­
cause at least two different kinds of donor-acceptor com­
plexes with markedly different spectral properties can con­
tribute to the extinction of a given complex. Large site-spe­
cific changes in $,- are not uncommon in other methods as 
well (e.g., fluorescence), and they are not necessarily ac­
companied by large concomitant changes in the respective 
association constants. Figure 1 shows the effect of nonzero 
62 values on the graph of "1/[X] vs. J (double intercept or 
Scatchard plot) for a hypothetical two-site system with 
identical microscopic association constants.6 Both positive 
and negative changes arising from the nonzero 82 result in 
curved lines on the plot and could be interpreted6 as being 
due to positive cooperative effects which are in fact absent. 
Furthermore, the association constants and the number of 
sites deduced (respectively) from the slope and intercepts of 
the plot on the basis of eq 6 will not reflect the actual mo­
lecular situation save when the Sj are all very small. When 
independent information concerning the magnitude of the 5, 
is not available, analysis of the experimental data is best ac­
complished via the actual observation eq 3, which is free of 
potentially restrictive assumptions. 

To show the use of the *, for a specific example of an in­
direct method, consider the formation of multiple charge-
transfer complexes between a suitable acceptor X and vari­
ous donors on the surface of a protein P. From eq 1 the ob-
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Figure 1. Double intercept plots of a hypothetical titration of two sites 
with identical microscopic association constants, showing the effects of 
changes in fa on the shape of the curves. The number next to each 
curve represents the per cent change in the expected value of $2 
(10052/2$). Constants used correspond to * = 1, n = 2, 5] = O, wt = 
W2—1,K\ = 4K2 = 10. See text for discussion. 

served average extinction coefficient is given directly as 

? = I>,[PX,] /£[PX,] (7) 
J = O J = O 

since the weighting factors in this case are all unity. The 
numerator of this expression is the definition of the absorb-
ance A = "LjAj for unit path length (Beer's law), and the de­
nominator is the conservation of mass equation for the total 
protein concentration [P]. Thus by definition t = /4/[P], 
and using this identity in eq 3 in a spectral region where en 
= 0 yields the observation equation for the formation of 
multiple charge-transfer complexes on a protein13 

MP] = z ^ , r a y M X ? (8) 
i=l J=O 

The last equation is the generalization, to any number of 
sites, of the macroscopic two-site model previously dis­
cussed in detail.6 

Use of the Weighting Factors Wj. In spectroscopic studies 
involving the return of excited molecules to their ground 
states, the intensive parameter of interest may depend not 
only on the concentration of the species PX,- but also on the 
amount of light absorbed by the complex. As an illustration, 
we consider the fluorescence intensity F of a given complex 
in very dilute solution, which is proportional to the product-
of the quantum efficiency »j and the extinction coefficient 
and concentration of the complex. The fluorescence per 
mole of total P is given by 

j'=0 j = 0 

and does not involve weighting coefficients in the sense of 
eq 1, whereas the average quantum yield is weighted ac­
cording to the extinction coefficients of the various species 

J W P X j / ^ t P X , ] = rj= F/A (10) 
J=O 

These and other examples of weighted and unweighted ob­
servation equations for indirect methods are listed in Table 
I. The list is not intended to be exhaustive. 

In all real systems, the association constants given in eq 2 
may be concentration dependent by reason of changes in ac­
tivity, and it may be preferable to use the concentration-
independent constants defined by 

YJ[PXJ] = tf,Virx[PX,.i][X] = VY0YA P][X]' ( ID 

where 7, is the activity coefficient of the species PX, and 
K / = K0

0K1
0K2

0 . . • Kj0, K0
0 = K0

0 = 1. The relation be­
tween the concentration-dependent and concentration-inde­
pendent titration constants is K7- = Kfyoyx^/jj from eq 2 
and 11, and the appropriate activity coefficients may be in­
troduced as weighting coefficients in eq 1 and 3.14 

Limiting Values and the Slope and Intercepts of Log and 
Double Intercept Plots. Graphical methods are commonly 
used to present and interpret data obtained in titration stud­
ies, and the advantages and disadvantages of several meth­
ods have been discussed previously.5,6 Here we consider 
only the plots of 3> vs. log [X] (formation function plot or ti­
tration curve) and $ / [X] vs. <3? (double intercept or Scat-
chard plot). Furthermore, we assume for ease of discussion 
that the weighting coefficients can be included in the associ­
ation constants in a manner similar to that described for ac­
tivity coefficients above and that conditions can usually be. 
found where <f>o = 0. In this case eq 3 can be written in the 
simple form 

* = Z * A W / Z KJ[X]' 
J=O j=0 

(12) 

Equation 12 will be referred to as the reduced, or corrected, 
observation equation and has the advantage that <l is zero 
when no complex is present. Note, however, that the K7- may 
be composite constants depending on the nature of the 
weighting coefficients. 

The limiting values of the log plot of the reduced obser­
vation equation at low and high saturation are respectively 
zero and 

lim 
[X ] - « 

* = * . = * „ (or w* - 5„ (13) 

On the double intercept plot, the high saturation limit is the 
intercept on the $ axis and is likewise given by eq 13. The 
low saturation limit is the intercept on the "I/[X] axis 

lim */ [X] = S1AT1 
[ X ] - O 

;or (<*> - S1)AT1] (14) 

Table I. Representative Experimental Methods for Multi-Site Titration Analysis and Their Corresponding Observation Equations" 

Measured quantity, definition Observation eq Wt factor 

Absorbance (unit path length), Aj = e3-c,-
Circular dichroism (unit path length), AAj = (eu — eRj)c, 
Fluorescence intensity (dilute solutions, XjAj < 0.01), Fj = rijtjCj 

Anisotropy of fluorescence, a.- = —^ —-^ 
I\\i + IlXi 

Chemical shift difference, 5,- = «,-[PX,-]/[P] 
Velocity of a reaction catalyzed by a multi-site enzyme, Vj — kp Cj 

i = XJeJC1IX1Cj = AI[V] 
Ae = 2j(eL; - (R1)C1IX1C, = AA/[P] 
V = ZjrijtjCjIXjejCj = FJA 
a. = ZiawieiCj = XJa1F1 

1 ^iVjtjCj F 
S = XjdjCj/XjCj = X1SjC1I[P) 
£«> = Xjkj^Cj/XjCj = i7[P] 

Vj(J 

0 Notation: c,-, molar concentration (or activity) of the species PX.,; e, molar (decadic) extinction coefficient; rj, quantum efficiency; /1;, I±. 
intensity components parallel and perpendicular to the electric field vector of the exciting radiation; AA = (360/87T In 10)0°, where 8° is the 
observed ellipticity in degrees; A7R), rate constant. 

Journal of the American Chemical Society / 97:5 / March 5, 1975 



1221 

It should be obvious from the last two equations that data 
evaluated at the intercepts alone cannot be used to deter­
mine the order of the reaction, even if the Bj are all zero, 
since the product «<£ obtained at the high saturation limit of 
either plot cannot be separated. This is the basis for the ear­
lier statement that $ (or n) must be known in advance in 
order to perform an analysis in terms of Adair's equation. 
On the other hand, if the 6j are all zero, dividing eq 14 by eq 
13 gives K\/n and n could be found from the ratio of the in­
tercepts if A"] were known. We now show that this proce­
dure also fails to resolve the problem of determining n. 

The log plot is generally an S-shaped curve, and the dou­
ble intercept plot can take the form of a straight line or a 
curve concave up or down.6 The slopes of these plots are ob­
tained by differentiating the relevant form of eq 12. Per­
forming this differentiation and evaluating the first few 
terms for n < 2 gives some idea of the complexity of the 
slopes and of the explicit dependence of each on both the 
concentration and the Sy 

log plot slope = d S / d log [X] = 

S1K1[X] + 2S2K1K2[X]2 + 
( K 1

2 K 2 ( S 2 - S 1 ) + . . . ) [ X ? + . . . 

(1 + K1[X] + K1K2[Xf + . . . ) 2 U S ; 

double intercept plot slope = rf(S/[X])/dS = 

S1K1 - S2K2 + 2(S1K1K2 - . . . ) [ X ] + 

r i (<MW----)[x]2+_^. 
S1 + 2S2K2[X] + 

(K1K2(S2 - S1) + . . . ) [ X ] 2 + . . . 

Clearly it is not possible to obtain ATi from these slopes by 
any simple procedure. At extremely low or extremely high 
saturation values, the concentration dependence of the 
slopes falls out, resulting in limiting slopes of zero at either 
end of the log plot, and limiting slopes of 

-K1 + K 2 S 2 /S j [X] — 0 (17) 

-S„K„/(S,, - Sn-1) [X] — * O0 (18) 

at the low and high saturation ends of the double intercept 
plot, respectively. In the simplest case, eq 13 and 14, togeth­
er with eq 17 and 18, form a set of four equations in at least 
five unknowns, and no single constant save S n can be 
uniquely determined from data obtained at the intercepts. 
In the general case, therefore, the only satisfactory proce­
dure for analyzing the data from multi-site titrations using 
an indirect method is by curve fitting. However, the inter­
cept data—when available—is useful in putting constraints 
on certain of the constants appearing in the reduced obser­
vation equation used to fit the data. The situation for weak 
complexes will be more difficult, for in these cases the high 
saturation limits may not be available, or worse, not enough 
of the curve can be obtained to ensure a representative fit. 
Setting Sy = 6; in eq 13-18 gives the general intercept and 
slope equations for charge-transfer systems. Notice that in 
no way can the observed slopes be considered as functions 
of the association constants alone, as is the case for the 
Adair equation. 

Formulation in Terms of Intrinsic Association Constants. 
The Equivalent and Independent Site Approximation. In a 
variety of applications the statistical (macroscopic) associa­
tion constants are not of primary interest in explaining the 

complexities of a binding system. Particularly with protein-
ligand equilibria and with enzyme subunit interactions, the 
microscopic or site-specific association constants are the de­
sired parameters, since they contain information about the 
individual (distinguishable) sites which may be of key im­
portance for the explanation of modes of substrate binding 
or of allosteric interconversions. The actual microscopic 
constants are not generally available experimentally, for al­
though they are defined in terms of the macroscopic con­
stants, there are usually more microscopic constants than 
there are defining equations.15 

A method for estimating the microscopic association con­
stants which has proven to be extremely useful in protein 
studies, but which has never been rigorously applied in the 
general case to indirect titration methods, makes use of the 
concept of equivalent and independent sites. Here it is as­
sumed that the individual sites of a given class (e.g., trypto-
phanyl residues) are not only intrinsically identical but do 
not interact with each other or with sites of other classes. 
Following earlier treatments,16 it can be shown that the 
macroscopic or statistical association constants for a set of 
identical sites are related to the intrinsic or site-specific as­
sociation constants Ic^ for the (Jj different microscopic 
species of the set having j bound X molecules by the rela­
tions 

K1 = (n - j + l )k ( j , ) / ; 

K;. = K1K2 . . . K1 = ( n)k^k(2) . . . kl» (19) 

( . J = n(n - 1 ) . . . {n - j + i)/j = n\ / ; ! (n - j ) ! 

If the sites are independent as well as identical, the con­
stants for PXy must be the same as those for PX;-1, etc.; 
thus S/ = j(j>, kmk(2) .. . W = W and using these with eq 
19 in eq 12 gives 

*-.*[x]g;(;)tw-yg (»>«• = 
4>[x]d\n £ ( ? V [ X ] V d In [X] = n<pk[x]/(l + /?[x]) 

for a single class of sites. The replacement <f> = S is intend­
ed to emphasize that the resulting equations are based on 
the assumption of equivalent sites. Except for the appear­
ance of 4> and 4> in the equation, (20) has the same form as 
the classical equation for equivalent and independent sites. 
As before, when the <5; are all zero, 4>/4> = v. If there are m 
classes total, 0 is given by the sum (average) over all classes 
/by 

x v x V-Wi1Mi[X] v A toi\ 
* = §*' = Sl^tTxI = £ M ^ S i (21) 

where 
S1. = Jr1[X]Al + k,[X]), O £ S1 £ 1 (22) 

is the saturation fraction of the zth class. 
In principle each separate site can be taken as a unique 

class in itself (n,- = 1 for all "classes"), and the summation 
represented by eq 21 is thus equivalent to the description of 
the binding given by eq 12, provided only that the sites are 
independent. Expanding eq 21 in terms of a common de­
nominator and collecting terms shows that, for example 
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$\KX = Enr$rK 
r=l 

GiK1K2 = E^(nr4>r + ns4>s)krks 
s>r r=i 

* A l • • -Kj= E- "-f!^ + . . . + H3(Pj)K ...k, 

K1 

K1K2 

j>u r « l 

= EK 
N .V-I 

= EEKK 
s>r r=l 

Kx...Kj= Z-- • EK---K 
}>u r=l 

(23) 

where the subscripts r, s, t, . . . refer to the individual distin­
guishable sites. Equation 23 also shows the average or sta­
tistical character of the macroscopic quantities $j in all the 
equations formulated in previous sections of this communi­
cation; since 

N N 

*1 = Enr^rK/Ekr 
r=l r=l 

*2 = E I M r + »A)*A/£X>A (24) 
s>r r=l s>r r~\ 

N Y-J+ l 

*, = E-- -E ("r*r + 
i>u r= l 

, . + Hj<pj)kr . . . 

-V N.1*1 

V Z • • • EK---K 
J>u r= l 

the $j are weighted according to the intrinsic association 
constants. By analogy with the preceding discussion, the 0,-
can be referred to as the intrinsic or site-specific values of 
the intensive parameter for sets of independent but not nec­
essarily equivalent sites. 

A plot of 0 vs. log [X] according to eq 21 has a lower sat­
uration limit of zero and an upper saturation limit 

lim 0 = <L = E nt4>{ (25) 
CX]-» i 

Equation 25 also gives the high saturation limit of the dou­
ble intercept plot (0/[X] vs. 0), and the low saturation in­
tercept is given by 

lim 0/[X] = 2>j<M* 
[ X ] - O i 

(26) 

Comparing eq 25 and 26 with eq 13 and 14 of the previous 
section, we find that 

*„ = Eni$i, *i*i = 2>*<M< (27) 

which leads to the definition 

*i*i/*n = I « , ^ V l ^ i s * (28) 
i i 

The average value of the intrinsic association constant for 
the entire system, weighted according to the number of sites 
and their intrinsic 0/, is thus uniquely determined by the 
high and low saturation intercepts of the double intercept 
plot. We note that while Jc is the "slope" of a straight line 
passing through both intercepts, the actual slope of the plot 
is a function of concentration 

^(0/[X]) = S<Wi0ifei2(l + fei[X])-2 

tf0 S { M,0 ,* , (1 + k i W 
= kx (29) 

At the low and high saturation limits, the concentration de­
pendence disappears and the limiting slopes are given by 

lim (slope) 
[ X ] - O 

Eni<t>ikiyEn^iki = K (so) 

lim (slope) = E ni^>jEn^>^^ = k°° (31) 
[ X ] - » t i 

The observed slope of the plot (average tangent to the 
curve) thus changes from a second moment average (eq 30) 
to a reciprocal average (eq 31) during the course of a titra­
tion. The first moment average is defined by the intercepts 
alone (eq 28). The last three equations have been given pre­
viously, in slightly different form, for the specific case of 
protein charge-transfer systems.17 For the sake of complete­
ness, we should give the slope of the log plot (0 vs. log [X]) 

d^/d In[X) = E«<<M<[X](1 + £,[X])-2 (32) 
i 

and mention it has upper and lower limits of zero. 
Application to Weak Complexes. Protein Charge-Trans­

fer Titrations. Two distinct problems arise in the analysis of 
data obtained with very weak multiple complexes, which 
are typical of protein charge-transfer systems. 

(i) Because of very small association constants it is usu­
ally impossible to obtain a complete saturation curve. In 
particular, it will generally not be feasible to obtain experi­
mental points at or near the high saturation intercept, 
where potentially useful information concerning the maxi­
mum value is available. 

(ii) Curvature in the double intercept plot due to concen­
tration or frequency effects may not be apparent, even if 
present, because of experimental scatter in the data. When 
curvature is readily apparent, curve fitting utilizing eq 12 
can give satisfactory estimates of the statistical association 
constants and $y for up to two or possibly three sites.18 Be­
yond that, the fitting procedure becomes unwieldy, since the 
number of constants which must be determined is 2« (^K; 
and Kj for each j). The same reasoning applies to fitting 
data to eq 21, where 2m constants must be determined 
(«/0/fc/ and ki for each ;') but here it may be possible to 
group the sites according to class and thus effect an overall 
reduction in the number of fitted parameters. When using 
homomorphic model systems as a basis for interpreting 
protein data, there is an added advantage to using intrinsic 
constants in fitting the data, since these will be directly 
comparable with the association constants determined for 
1:1 model complexes. This follows directly from inspection 
of eq 21, which reduces to eq 20 for any particular 1:1 
model under discussion. 

In the event that curvature is not apparent in the double 
intercept plot for weak complexes, or when it is so small as 
to be practically indistinguishable from experimental scat­
ter, an approximate method of some usefulness for multi-
site titrations is the fit to a straight line. This is equivalent 
to the assumption that all sites are identical as well as inde­
pendent, and the fitted line is described by a set of apparent 
constants through rearrangement of eq 20 

0/[X] = *„s(»0„p - 0) (33) 

The slope £app of such a line is the average tangent to the 
curve over the range of the experimental data, and if this 
range is sufficiently large,5 the slope determined in this 
manner will be very roughly comparable with the slope k 
defined by the real intercepts (eq 28) and with the slope de­
termined by averaging the actual slope k\ (eq 29) over the 
range of the available data. The high saturation intercept 
«0aPP of such a line will always satisfy the condition 

u(b — d> 
' a p p • x 

!>.•<; (34) 

if there are no positive cooperative effects, since curvature 
in this case is always concave up.6 The equality on the left-
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Figure 2. Double intercept plot of the charge-transfer titration of re­
duced and alkylated trypsin with l-methyl-3-carbamidopyridinium 
chloride in 6 M guanidine hydrochloride at 350 nm. See text for de­
tails. 

hand side of eq 34 applies when all fa save one are zero (1:1 
complex or a set of completely identical sites). 

These points are graphically illustrated in Figure 2 for 
the charge-transfer titration of exposed tryptophan and ty­
rosine donors in denatured trypsin (P) using l-methyl-3-
carbamidopyridinium chloride as an acceptor (X).9 The 
theoretical curve was generated by means of eq 21 for two 
classes of sites, using nTrp = 4, &TrP = 1-54; njyr = 10, fcTyr 

= 0.24. The values for fa, in this case the extinction coeffi­
cients «Trp and eryr, were obtained from studies of 1:1 com­
plexes of various tryptophanyl and tyrosinyl derivatives 
with the acceptor. The plot shows clearly that the actual 
value of ioo = 2,n,e,- is underestimated by the straight line 
method, due to the small but significant curvature arising 
from nonidentical chromophores with differing association 
constants and extinction coefficients. The numerical values 
of interest, for comparison to the fitted intrinsic constants, 
are kapp = 1.3, k = 1.0, k0 = 1.4, £» = 0.5; neApp = 5700, i„ 
= 7430. The intrinsic association constants used to fit the 
curve (1.54 and 0.24 for tryptophan and tyrosine, respec­
tively) are both slightly smaller than the association con­
stants of the 1:1 model complexes (1.7 and 0.26, respective­
ly), undoubtedly reflecting the expectation that access to 
the sites in the denatured protein is randomly hindered by 
adjacent sections of the polypeptide chain. A point of more 
than passing interest is that in spite of the unfavorable tryp­
tophan to tyrosine ratio, the characteristics of the measured 
part of the curve are practically all due to the tryptophan 
contribution in the example given. 

It is appropriate to emphasize here that, depending on 
the method used, <£y and fa may be frequency-dependent 
quantities. Specific reference to this fact is made for 
charge-transfer complexes in Figure 2, where the wave­
length dependence of the average extinction coefficient has 
been symbolically included in the form i(X). As a conse­
quence of the frequency dependence of 3>y and <£,-, it is im­
portant to recognize that the observed slope, or average tan­
gent to the curve, will be a function of frequency (wave­
length) as well as of concentration. Thus, in eq 28-33, for 
example, we should denote the slopes by £(A), &x(^), koW, 
etc. The frequency effect can be removed by integrating 
over all frequencies, using oscillator strengths in place of 
extinction coefficients for example. However, this does not 
remove the weighting due to the <£, or 4>i in the various defi­
nitions of the average slopes, and these quantities will vary 
from system to system. 

Before leaving the discussion of various averages and ap­
proximations, we should mention one other average quanti­
ty of interest. When the high saturation limit 0» can be ob­
tained experimentally or by curve-fitting to an appropriate 
model, the overall average saturation fraction can be calcu­
lated from a combination of eq 21 and 25, since 

4>/4>« I «,-4><VZ«A- = s (35) 

Comparing the last with a similar relationship obtained 
from eq 12 and 13 shows that 

* / * - = £ * , K J X ] 7 * „ I ; K J X ] ' = 5- (36) 
J=I J=O 

because the quantities on the extreme left of both equations 
are identities ($ = (/>, l><o = 4>^). Under the assumption of 
linearly related $y (all <5, = zero), eq 36 becomes 

$/*. = ]T7-K.[ X]VKXX-[X] ' 
j=l J=O 

v/n = s (37) 

It is therefore always possible to calculate S from an indi­
rect method (if $„ = </>„ is known), but v cannot be ob­
tained unless separate information concerning n is available 
(this is another way of stating that it is not generally possi­
ble to deduce the order of a reaction from an indirect meth­
od alone; see discussion following eq 14). 

Different Protein Species in Equilibrium. The General 
Model. An equation of the form of eq 12 is necessary and 
sufficient to describe all of the species resulting from the 
equilibrium P + nX — PXn, since each of the species PX; is 
unique in the thermodynamic sense (average over a great 
many, possibly allosteric complexes of P with j molecules of 
bound X). In certain cases it can be shown that P itself ex­
ists as two or more discrete species in equilibrium with each 
other and with X, and the entire array of possible macro-
scopically distinct forms can be written in terms of the 
species matrix 

P1 P1X P1X2 

P2 P2X P2X2 

Pm PmX PmX2 

PiXn 

= C1 

i = 1, 2, ... m; j = 0, 1, 2, ... n (38) 

The reduced observation equation for Cy is obtained from 
eq 12 by summing over all the (' species 

Tn n m n 

* = H^iP 1 XJZII [P 1 X,] = 
i=l j=l J=I J=O 

m n m n 

I I * H K W [ P , ] [ X ] 7 I I K J P J [ X ] ' (39) 
I=I J=I 1=1 J=Il 

where we have used 

[P1-X,] = * Jp,x,.,][x] = K J P W (40) 

with K,0 = Ki0 = 1 'n place of eq 2 to define the set of asso­
ciation constants for the binding of X. The [P,] in eq 39 and 
40 can be written in terms of the equilibria Pi ̂  P2 ̂  - - -
by making use of the definitions 

[P1] = K1[P,.!] = K1K2... KlV,] = K1[P1] (41) 

where Kj = ATi = 1, so that eq 39 becomes 
m n jn n 

* = 1 1 ^ H K 0 K 1 [ X ] V I l K 1 1 K i X ] ' (42) 
j=l J=I i=i ;=l 

The last equation contains a complete set of independent 
constants describing the set of equilibria involved, indexed 
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according to the species matrix Cy to avoid confusion. The 
set of association constants K'tj for the reactions /ViX; — 
P1-X, is not independent and can be found from the relations 

K'u = [P,X,]/[PMX,] = K1K,,/*,.!,, j > 1 (43) 

so that eq 42 and 43 together contain all of the possible 
macroscopic constants of the system. Comparing eq 42 with 
eq 12, we find that both have the same form provided that 
the constant terms in eq 12 are interpreted as 

m m 

Kj = LK„K„ *yK, = Z*„K„K, (44) 
M J=I 

This is the observation equation equivalent of the statement 
that all possible forms of the indirect binding equations are 
special cases of Adair's equation. 

The reduced observation eq 42 can also be written in 
terms of the intrinsic association constants for identical 
sites 

Kn...Kij = ( ^ 1 ' 1 ' . . . * , " 1 (45) 

If the sites are equivalent and independent for a particular 
i, then A:/" . . . fc,-0') = k{ and *,y = j4>j such that 

* = ti^ii^k/UxV/tJ:^) k/K^xy (46) 
I = I j=I \J / J=U=O W / 

The last equation can be simplified if «, and &, are the same 
for all / (binding sites are not excluded by changing the 
form of P, and all forms of P have intrinsically identical 
sites); then 

J-§•«*(£>(;) *w) / 
IJKf(^ (*)*W')= «*,»)/« + IiX]) (47) 

where <£,• = 2,-</>,-K,-/2,-K,- is weighted according to the pro­
tein-protein association constants. With the exception of 
the appearance of the average quantity <£,-, eq 47 is the same 
as eq 20. Evidently in a system of completely equivalent and 
independent sites, the form of the protein is immaterial as 
long as binding sites are not created or excluded among the 
different protein species, and the correct value for the asso­
ciation constant will be obtained from a plot of ^/[X] vs. <j>. 
However, the intercepts may be a function of K1-, depending 
on the particular intrinsic parameter used in the investiga­
tion. A specific example has been given for the case in 
which Pi is a monomer, P2 a dimer, etc.19 

The assumption of completely equivalent and indepen­
dent sites involved in deriving eq 47 does not necessarily 
represent a physically interesting case for proteins, but as 
before we can consider the equation to hold for an individu­
al class of sites and sum over all classes p to obtain 

* = inp^ipkp[X]/(l + kp[X]) = £nt$ttst (48) 
P=\ p=i 

As with the all identical and equivalent site model, eq 48 
has an analogous form—eq 21—but the kp are averages 
over all the i protein species with sites of class p, and the r/>,-p 
are similarly defined. 

When the protein species are independent of one another 
(mixture) or are very slowly interconverting with respect to 
the time of measurement, the species matrix Q, can be 
summed over the individual rows to give 

* = Z(2>«*„[x]y2>jx]') (49) 
>=i \ j=i j=o / 

If the equivalent and independent site approximation is ap­
plied to eq 49, it reduces identically to eq 21. Equation 21 is 
therefore applicable to mixtures of different protein species, 
each with a single set of equivalent and independent sites, as 
well as to several sets of equivalent and independent sites on 
a single protein species. 
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